首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14801篇
  免费   3335篇
  国内免费   2879篇
测绘学   664篇
大气科学   1610篇
地球物理   3998篇
地质学   8521篇
海洋学   2544篇
天文学   43篇
综合类   1070篇
自然地理   2565篇
  2024年   33篇
  2023年   195篇
  2022年   428篇
  2021年   657篇
  2020年   613篇
  2019年   654篇
  2018年   595篇
  2017年   653篇
  2016年   620篇
  2015年   725篇
  2014年   951篇
  2013年   1174篇
  2012年   919篇
  2011年   1013篇
  2010年   937篇
  2009年   934篇
  2008年   972篇
  2007年   1017篇
  2006年   1048篇
  2005年   891篇
  2004年   847篇
  2003年   734篇
  2002年   669篇
  2001年   569篇
  2000年   499篇
  1999年   421篇
  1998年   383篇
  1997年   326篇
  1996年   259篇
  1995年   264篇
  1994年   241篇
  1993年   187篇
  1992年   136篇
  1991年   106篇
  1990年   74篇
  1989年   83篇
  1988年   46篇
  1987年   35篇
  1986年   22篇
  1985年   28篇
  1984年   14篇
  1983年   10篇
  1982年   3篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1978年   9篇
  1973年   1篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
海底地下水排放(SGD)是近海海域的一个重要的营养盐来源。本研究借助多种天然镭同位素对春季苏北浅滩海域的SGD及其携带入海的营养盐通量进行量化评估。研究发现:苏北浅滩海域的~(224)Ra、~(223)Ra和~(226)Ra等镭同位素的浓度水平较高,呈现近岸高、远岸低的分布趋势;根据~(224)Ra/~(226)Ra的"表观年龄模型"估算的水龄的分布情况推断,春季该海域表层水体主体流向为东北向,流速约为0.1m/s,这与前人物理海洋数值模拟结果一致;最终利用226Ra质量平衡模型发现海域的SGD通量为(46±29)cm/d,由其携带入海的溶解态无机氮、磷、硅营养盐(DIN、 DIP、 DSi)等的通量分别为(2.6±3.1)×1~09、(3.0±2.5)×10~6和(5.5±4.2)×10~8mol/d。  相似文献   
102.
矿产资源开发导致了地下水失衡,地下水失衡又给矿产开发造成了极大的安全隐患,近年来,矿产资源开发与地下水环境保护之间的矛盾愈发凸显。通过对内蒙古鲁新井田典型的水文地质条件进行分析研究,分析采矿导致地下水失衡机理,深入剖析矿井开采充水条件及矿山开发对地下水环境的影响,合理提出了促进矿产开发与地下水保护相互协调的对策建议,为实现"采矿保水"协调统一提供了基础地质依据。为类似地区矿产开发过程中遵循自然规律,趋利避害,保障生产安全,保护地下水环境安全,实现资源绿色开发有较好的指导借鉴作用。  相似文献   
103.
Though it is well known that vegetation affects the water balance of soils through canopy interception and evapotranspiration, its hydrological contribution to soil hydrology and stability is yet to be fully quantified. To improve understanding of this hydrological process, soil water dynamics have been monitored at three adjacent hillslopes with different vegetation covers (deciduous tree cover, coniferous tree cover, and grass cover), for nine months from December 2014 to September 2015. The monitored soil moisture values were translated into soil matric suction (SMS) values to facilitate the analysis of hillslope stability. Our observations showed significant seasonal variations in SMS for each vegetation cover condition. However, a significant difference between different vegetation covers was only evident during the winter season where the mean SMS under coniferous tree cover (83.6 kPa) was significantly greater than that under grass cover (41 kPa). The hydrological reinforcing contribution due to matric suction was highest for the hillslope with coniferous tree cover, while the hillslope with deciduous tree cover was second and the hillslope with grass cover was third. The greatest contributions for all cover types were during the summer season. During the winter season, the wettest period of the monitoring study, the additional hydrological reinforcing contributions provided by the deciduous tree cover (1.5 to 6.5 kPa) or the grass cover (0.9 to 5.4 kPa) were insufficient to avoid potential slope failure conditions. However, the additional hydrological reinforcing contribution from the coniferous tree cover (5.8 to 10.4 kPa) was sufficient to provide potentially stable hillslope conditions during the winter season. Our study clearly suggests that during the winter season the hydrological effects from both deciduous tree and grass covers are insufficient to promote slope stability, while the hydrological reinforcing effects from the coniferous tree cover are sufficient even during the winter season. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
104.
The study is based on the underground fluid observation data in Lijiang area, northwest Yunnan Province. The data include the water level and temperature in Dangxiao well and Jinjia well, and the ion measurements in Ganze spring. Combining with the data of regional hydrogeology, rainfall, well structures, and the geothermal gradient, we analyzed the variations of each measurement item before the Ludian MS6.5 earthquake on August 3, 2014 and discussed the possible mechanism for the abnormal variations. The water levels of both Dangxiao well and Jinjia well are influenced by local rainfall, but the former shows hysteresis according to rainy seasons and is the long trend influence; while the latter shows synchronization between high water level and rainy season, indicating good connection between well water and shallow aquifer. The recharge water for Dangxiao well is in relatively low temperature, and the temperature sensor is located at the major connecting section between the well water and the aquifer; the water temperature variation is mainly affected by the discharge status and variation of water level. The Jinjia well is always in static level, and the temperature sensor is below the major connecting section between the well water and aquifer, so the water temperature is affected little by water level variations and in smooth fluctuation. The recharge source for Ganze spring can generally increase the contents of calcium and magnesium ions, so does the conductivity. The water level data of Dangxiao well since 2012 are decomposed with wavelet technique. The results, excluding such high-frequency components as the noise and the semidiurnal and daily wave components influenced by earth tide, are further processed with difference method in order to eliminate the trend effect. The results show that the relative change of water level is enhanced and in relatively rapid increase before the Ludian MS6.5 earthquake; the corresponding water temperature values are high. The tendency of water level in Jinjia well displays descending, while the corresponding water temperature shows ascending. The content of calcium ion, magnesium ion, bicarbonate ion, and conductivity of Ganze spring are descending, while the content of fluoride ion is ascending. The abnormal variations of underground fluid in Lijiang area appeared in turns and were accompanied with minor earthquakes before Ludian MS6.5 earthquake, which indicates enhancing of regional stress and increasing of fluid activity.  相似文献   
105.
The regional-scale consistency between four precipitation products from the GPCC, TRMM, WM, and CMORPH datasets over the Arabian Peninsula was assessed. Their macroscale relationships were inter-compared with soil moisture and total water storage (TWS) estimates from AMSR-E and GRACE. The consistency analysis was studied with multivariate statistical hypothesis testing and Pearson correlation metrics for the period from January 2000 to December 2010. The products and GRACE estimates were assessed over a representative sub-domain (United Arab Emirates) with available in situ well observations. Next, geographically temporally weighted regression (GTWR) was employed to examine the interdependencies among the peninsula’s hydrological components. The results showed GPCC-TRMM recording the highest correlation (0.85) with insignificant mean differences over more than 90% of the peninsula. The highest GTWR predictive performance of TWS (R2 = 0.84) was achieved with TRMM forcing, which indicates its potential to monitor changes in TWS over the arid peninsular region.  相似文献   
106.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   
107.
An experimental campaign was set up to quantify the contribution of evapotranspiration fluxes on hillslope hydrology and stability for different forest vegetation cover types. Three adjacent hillslopes, respectively, covered by hardwood, softwood, and grass were instrumented with nine access tubes each to monitor soil water dynamics at the three depths of 30, 60, and 100 cm, using a PR2/6 profile probe (Delta‐T Devices Ltd) for about 6 months including wet periods. Soil was drier under softwood and wetter under grass at all the three depths during most of the monitoring period. Matric suction derived via the soil moisture measurements was more responsive to changes in the atmospheric conditions and also recovered faster at the 30 cm depth. Results showed no significant differences between mean matric suction under hardwood (101.6 kPa) with that under either softwood or grass cover. However, a significant difference was found between mean matric suction under softwood (137.5 kPa) and grass (84.3 kPa). Results revealed that, during the wettest period, the hydrological effects from all three vegetation covers were substantial at the 30 cm depth, whereas the contribution from grass cover at 60 cm (2.0 kPa) and 100 cm (1.1 kPa) depths and from hardwood trees at 100 cm depth (1.2 kPa) was negligible. It is surmised that potential instability would have occurred at these larger depths along hillslopes where shallow hillslope failures are most likely to occur in the region. The hydrological effects from softwood trees, 8.1 and 3.9 kPa, were significant as the corresponding factor of safety values showed stable conditions at both depths of 60 and 100 cm, respectively. Therefore, the considerable hydrological reinforcing effects from softwood trees to the 100 cm depth suggest that a hillslope stability analysis would show that hillslopes with softwood trees will be stable even during the wet season.  相似文献   
108.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   
109.
赵亮  何凡能  杨帆 《干旱区地理》2020,43(5):1337-1347
随着全球变化加剧,世界各地自然灾害的频发,国际社会为应对自然灾害进行了不懈努 力,历届世界减灾大会不断强调对应急管理全流程的研究,恢复重建作为应急管理的重要环节而 得到广泛重视。积极开展灾区恢复重建后效评估有利于保障灾区恢复重建实施与区域可持续发 展。灾区恢复重建后效评估研究时间较短,首先比较分析了国内外恢复重建的内涵,明确了恢复 重建后效评估的基本概念,并梳理了灾区恢复重建后效评估的在中国的发展演变。由于灾区恢复 重建内容复杂多样,本文结合灾区恢复重建后效评估的发展历程、研究范围与关注时段,分别从项 目、要素与可持续性三个关键视角对后效评估的理论方法等展开评述,结果表明:(1)项目后效评 估在灾区恢复重建后效评估中起步较早,现有评估多集中于居民住房、基础设施、公共设施等工程 质量的评估,但缺乏对项目设计过程中社会居民参与度、公众满意度以及社会经济效益等的评 估。(2)要素后效评估在灾区恢复重建后效评估中涉及范围最广,具体包括社会、经济与环境等要 素,这些要素的评估受政策绩效影响较大,后期需要构建综合的评估体系以开展科学评估。(3)可 持续性后效评估以联合国可持续发展目标与地方国民经济与社会发展计划为基础构建评估框架, 有利于促进灾区的可持续发展。通过综合分析《仙台减轻灾害风险框架》中“重建的更好”(BBB)理 念,联合国可持续发展目标(SDGs)以及《巴黎协定》适应全球变化等诉求,结合当前灾区恢复重建 后效评估现状进行展望,以期为灾区恢复重建与可持续发展提供一个更为系统、综合的技术参考。  相似文献   
110.
明确干旱区产水量的驱动因素,能为区域水资源优化和可持续发展提供科学依据。基于 MODIS 植被指数、HWSD 的土壤数据集以及气象要素数据,采用 InVEST 模型和地理探测器探究疏 勒河流域多年平均产水量的空间分布,揭示不同空间尺度上产水量的单因子及双因子交互驱动机 制。结果表明:疏勒河流域多年平均产水量呈现南部>北部>中部。流域尺度上,产水量空间格局 的主导驱动力为降水,坡度与降水交互驱动作用最为显著。区域尺度上,南部山区、北部马鬃山地 区和中部平原区的主导驱动力各不相同,分别为日照时数、人为干扰强度、降水,双因子交互作用 显示人为干扰强度与其它因子的交互最为显著。不同土地利用类型中,耕地产水量的主导驱动力 为坡度,而其它地类产水量的主要影响因子为降水。各地类中降水与其他因子的交互均大大增强 了单因子驱动力。因此,干旱区产水量多尺度驱动机制研究对区域水资源可持续管理至关重要。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号